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Abstract-- In thiswork a general framework, called Uniform
Coevolution, is introduced to overcome the testing problem.
This framework is based on competitive evolution ideas
where the solution and example sets are evolving by means
of a competition to generate difficult test beds for the
solutionsin a gradual way. The method has been tested with
the density parity problem in cdlular automata, where the
seleded examples can biased the solutions founded. The
results sow a high value of generality using Uniform
coevolution, compared with no coevolutive approaches.

Index terms—competitive aevolution, cdlular automata,
density classfication problem

I. INTRODUCTION

Coevolution refers to the simultaneous evolution of two or
more species, where the survival of each species depends
one each other. This process has proven its capabilities of
generating complexity in nature. From the computational
point of view, a competitive system is composed of
several confronted subsystems where the evaluation of a
subsystem depends on the performance over the opposite
one. The ideas of coevolution have been introduced into
the field of evolutionary computation from different
points of view:

Applying coevolution: One of the first authors in
applying coevolution in an optimization problem was
Hillis in his work about coevolution of parasites for
improving solutions in a sorting networks problem [1]. In
this work, the competition takes place between individuals
solutions and individuals examples. These examples were
generated to be a good test bed for the solutions. In this
way both, populations of solutions and population of
examples were competing to beat one each other. The
result was a better method to generate solutions for the
sorting nets problem. Further works have applied these
ideas to other optimization problem [2].

Coevolution in game theory: Some related works have
been done in the field of game theory. Thisfield is a good
example of domain in which the ideas of coevolution
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could be eaily tested. Angeline [3], used coevolutive
ideasin the game of Tic Tat Toe. In thiswork, individuals
are different game strategies, they compete one ajainst
ead other. Therefore, the fithess of ead individual does
not have an absolute value, but a value depending on the
goocdhess of their oppments. These ides have been
extended in other games like the game of Othello [4] or
the game of Tag [5] and even generating theories of
leaningin games, in competitive environment [6].

Theoretical works. More recently, some works for
establishing the theoreticd foundations on coevolution
have been done. Paredis, in 1996 propcses a genera
framework for the use of coevolution to boat the
performance of genetic seach [7], and introducing a new
type of Genetic Algorithm cdled Co-evolutionary Genetic
Algorithm. Rosin and Bellew [8] introduce three new
techniques in competitive @evolution: Competitive
fitness $aring, shared sampling, and hall of fame; and
provide severa different motivations for these methods
and mathematicd insights into their use.

In the present article, a new method, based on Hilliss
idess to use wmevolution for overcoming the testing
problem is introduced. We propose agenera framework
to apply coevolution to any evolutionary computation
technique, in such a way that the examples could evolve
towards optimal data examples.

Il. THE TESTING PROBLEM

In some previous works [9], [10], [11], we have studied
evolutionary systems and founded the over-adaptation
problem. In these caes, some rules (or neural networks)
have been evolved for navigation problem in robaics (or
leaning rules for neural networks have been found). In all
cases, the adieved solutions were a hoc for spedfic
Situations. For instance, in the roba navigation problem,
when the roba had to facenew situations, new rules had
to be evolved. All these problems are referred in the
literature &s the testing problem.

To overcome the testing problem Rosing and Bellew [8]
suggest a new Co-evolutionary method, the shared
sampling. In this method a population of examples is
always kept. Each example of the population is evaluated
computing its performance over a previoudy seleded set
of solutions. In the same way, ead solution is evaluated
computing its performance over a previousy seleded set



of examples. The seledion of the examplesis caried out
propationally to the evaluation of examples. The
examples with better general evaluations are preferred as
test cases for the solutions, and their evaluations are
computed again.

The previously mentioned Hilli s solution [1] is $milar. In
this case, the examples are not seleded, ead time an
evaluation of a solution is nealed. By the oppasite, eat
solution has a subset (subpopulation) of examples related
with it. This subset is kept constant, and it isin continuous
evolution.

The evolution of the examples, in both cases, tries aways
to generate harder examples for the solutions. As the
solutions are more complex and acairate, they must prove
their cgpabiliti es with more sophisticaed and complex
examples.

In some caes the &ove-proposed solutions could
generate a serious problem. For instance in a problem
where the generation of good solutions over reduced
examples st isavery difficult task. In this cese:

e If the examples evolve towards hard data sets, the
process could end into an impaosshility of achieving
solutions for these hard example sets, and the
continuous adaptation of the examples could stop the
adaptation of the solutions. These ae caes in which
the fitness landscape is abruptly sharpened by the
examples.

« |f the adaptation of examples processis carried out in
such away that the alaptation of solutions is all owed
the solutions could read in a process of over-
adaptation, making more difficult the generation of
more acarate solutions. In these cases, the examples
are not modified too much in order to allow the
generation of solutions, but the generated solutions
become good for the particular example set, and
solutions are not able to solve the problem for
different examples.

These two problems imply some difficulties in the process
of evaluation of the solutions:

« Firstly, asthe examples %t is ared for al solutions,
even if the evolution of examples was dowed down,
solutions could be faced with too many difficult
examples. A good example for a solution could be a
bad one for another. When the examples are too
difficult, there is no seledive presaure for solutions
to evolve. The fitness values of all solutions are
similar, low fithess and there is no way of seleding
goodindividuals to improve solutions.

» Seoondly, when a population of solutions has been
adapted to an examples t, the dange of the
example set could have negative mnsequences. The
fitness landscape changes abruptly and the
previoudly evolved solutions have no meaning of
evolving toward the new fitnesslandscepe.

For overcoming these problems, we propase, in this work,
a new method d adjusting coevolution to alow both the
evolutions of good solutions and hard test examples in
difficult generali zaion problems.

1. UNIFORM COEVOLUTION

The achitedure is compased of a population of solutions
and a set of populations of examples (one population of
examples for ead individual in the population of
solutions). This gructure refleds what it was cdled
Independent Examples Sets.

The solutions and examples gstems are named
respedively:

e Solutions Generator System (SGS). - It is composed
by a population of solution individuas (Sl). For
computing their fitness is necessry to face ea
individual with a set of different situations, examples,
represented by a population in the Examples
Generator System.

* Examples Generator System (EGS). - It is a meta-
population compaosed of meta-individuals, which are
populations of examples (PE). Each PE is related
with a Sl. Example individuals (El) compose the PE.
The fitness of those individuals is inversely
propational to their related Sl fitness when
operating over them.

The evolution of eat system depends on the other's
evolution. The genera procedure is as follows:

1. Initialization of the populations:
1l.a SGSinitializaion (m Sl individuals)
1.b. EGSinitidization (m PE of n El individuals ead)
2. Computation of the fitness
2.a. Evaluation of the S| over ead individual El in its
related PE
2.b. Thefitnessof the Sl isa combination of the éove
evaluations
2.c. The Fitnessof the PE is st inversely to the fitness
value of the @rrespondent SI
3. Generation of new populations
3.a. PE evolutions by means of generation of new El's
applying an ad-hoc genetic operator (Incremental
Genetic Operator -IGO-)
3.b. EGS and SGS evolution

3.1  Solution Generator System

The objedive of this gystemisto gradually generate better
solutions to a particular problem. Any evolutionary
computation method can be used, where an individual
represents one problem solution. The evolution of the
SGS follows the dynamics of the evolutionary
computation method seleded.



Computation of solution's fitness The generation of
better solutions is driven by the evaluation function, also
called fitness function. Each individual is evaluated over a
set of examples. Lets call PE; the examples set of the
individual i, this population is composed of severd
independent blocks (A..Z), which meaning will be
explained later. Therefore El ijA is the j-th example of the
block A for the set PE;. As previously mentioned, for the
smoothing fithess landscape mechanism, a linear
combination of evaluations is used as fitness value of the
individual. The fitness for an individual i is computed
using the evaluation values of that individual over a set of
n examples, in equation 1.
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Where F(S;) is the final fitness of the i-th solution
individual, nb is the number of blocks in the population of
examples, ¢® is the deviation of the fitnessvalues of the
blocksfor S;, Cisa mnstant measuring the importance of
the deviations over the normalized total fitness of the
blocks, and is F'g(S;) the fitness of S; for the block j.
Thisvalueis computed foll owing equations 2 and 3.
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Where f(S;, El') isthe value of the evaluation of S; over
the example El', nex is the number of examples of eah
block. The W), values are used to weight the importance
of ead example in the total computation of the fitness of
a 8. The w values depend on the proximity between the
fitness they are weighting and the maximum fitness and
they are computed by the equation 4.
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Where & is a measure of the evolution degree of the
individual over its examples =t, and the 3 gives an idea
about how the example j contributes to the total fitnessof
individual i. The g values are cmputed by equation 5.
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And the 3 values by equation 6.
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Where Fux is the maximum fitnessvalue that a S; could
ever read, fimx fimn ae the maximum and minimum
fitnessvalues readed for S; over it related examples st
respedively, described throughequations 7 and 8.
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3.2  ExampleSGenerator System

The second subsystem in Uniform Coevolution is cdled
Examples Generator System (EGS). The EGS is a meta-
population composed of a set of populations {PE;}.
Therefore, the EGS is composed of two dependent
evolutive systems. the meta-population and the PE;, one
embedded into the other.

Meta-population. As a way of developing the
independent examples sets ideg the examples are divided
in M independent sets PE;, which are the individuals in
the meta-population. Each PE; is related and competes
against a unique solution S;. Individuals PE; is composed
of anumber of chromosomes. These chromosomes are the
previousy mentioned bocks of the PE. Ead
chromosome represents a set of examples. These blocks,
that could be cmnsidered independent and evolves in an
independent way, are nealed for crossover purposes.
When the individuals in the meta-population interchange
their genetic material, the blocks are interchanged.

Population PE;. All the individuals El; in a block are
generated from an espeda individual cdled “sed
example”. The generation of El;; is based on a particularly
designed Genetic Operator cdled Incremental Genetic
Operator 1GO. This generation process congtitutes the
unique method for evolving PE;.

Evolution of population. Initialy all the seed examples
of the blocks are identicd and randomly generated. The
individualsin the blocks are dl the same and equal, in this
initial step, to their related seed example.

In furthers geps of evolution, the individuals in a block
are generated from the seed example by the Incremental
Genetic Operator (IGO). Also the blocks of PE are
inherited by the off spring from their parents.

Incremental Genetic Operator. For the designing of the
IGO is necessary to define adistance function between
examples. This distance is a measure of the differences
existing among examples. most different are two
examples a higher value outputs the function and vice-
versa, equation 9.
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Where E isthe set of all posgble examplesfor a particular
problem.



As the distance between examples is a numerical value,
the change in the examples could be computed using the
equation 10.
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Where A and B are two constants to regulate the shape of
the function. This shape conforms how different the
examples have to be inside a block from the fitness of the
individual. The value calculate is used to generate
examples which a distance between genotipesequal to | .

(10)

For the evolution of examples the following rules are
used:

1. To generate the first example for the individua | ()
2.To generate al the individuals in the block, the
equation 11 is used.

N(O,lj) = D(E;,Ei+1) (11)

Where N(O,I) is a Norma distribution, means O, and
deviation I, and D(x,y) is the distance between examples x
and y. In other words, the examples are generated in such
away that their distances follow a Normal distribution of
deviation |; computed for S;.

IV. DENSITY CLASSIFICATION PROBLEM

The Density Classification Problem (DCP) is one of the
most studied problems in Cellular Automata (CA) [12].
This problem is interesting from both, theoretica and
practical aspects, and it has been proven the non-existence
of any rule able to solve the problem for a binary CA with
aneighborhood of radius one [13]. The DCP is defined by
the equation 12.
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Where T,(N,M) isan unidimensional DCP of size N, with
acritical density of p, and after M updating periods. If the
initial density p(sp), is smaller than the critical density, the
CA has to trangit, after M steps, to a configuration of all
Zeros. § istheinitial configuration, the configuration of a
CA after some i steps is s=W(sy), where the function W
definestherule of the CA.

Figure 1 shows the application of Uniform Coevolution to
DCP. A canonical genetic algorithm is applied in SGS,
EGS evolve with mechanisms previousy described in
genera Uniform Coevolution architecture.
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System (EGS)
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Figure 1: Uniform Coevolution architecture applied to
DCP.

A. Experimental environments

Six kinds of experiment have been performed. In table 1
is shown abrief description of each type of experiment.

Table 1: Experiments description.

Experiment | Examplesset | Dom. Know.
FixedNI Constant No
Fixed Constant Yes
RamdomN!| Random No
Random Random Yes
CoevNoSPC Evolutive No
CoevUni Evolutive No

A total of 30 experiments of each type have been realized
to overcome the stochasticity of the GA. In al the
experiments a GA have been used to evolve the solutions.
In tables 2 and 3 the GA and CA parameters of runs are
shown.

To test the generalization capability of the obtained CA
rules a total of 1000 new initial configurations are
generated.

Table 2: GA parameters.

Population size 100
Chromosome length 128

Crossover probability |0.9

M utation probability | 0.01

Elitism 0.05
Generations 500

Selection oper ator Tournament (3)




Table 3: CA parameters.

States Binary
Neighborhood 7
Dimension Uni-dimensional
Number of rules 3.4x10%®
Boundary conditions Periodic
Latticesize 149
Number of initial configurations 7.1x10"

These initia configurations are the same for al the
experiments and are equaly distributed in ten density
intervals. This supposes one hurdred configurations of
density between 0.0 and 0.1, one hurdred between 0.1
and 02 and so on. The percentage of succesdully
classfied configuration is the measure of generalizaion
of therule.

Table 4: Generali zation results

Experiment | Best Value | Average Value | Sigma
FixedNI 93.46% 91.68% 0.92
Fixed 93.98% 70.74% 2043
RamdomNI 93.01% 92.10% 0.27
Random 94.10% 92.55% 0.51
CoevNoSPC 93.48% 92.55% 0.42
CoevUni 93.61% 92.63% 0.51
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Figure 2: Accumulative probability of finding a spedfic
solution.

The results of this generalizaion test are summarized in
table 4. There ae not fundamental differences in best
values for al the experiments, however from the average
values it can be inferred some @nclusions. For the
FixedNI experiment the average value is horter. In this
case some times the solutions correspond with a locd
minimum in generalization. This is due to a problem of
over-fitting. With the dimination of information in the
fitness function, the leaning process becwme less
acarate, and in generdization the over-fitting problem
can be overcome. Besides, the Co-evolutive experiments

show a better generalizaion cagpability, and the inclusion
of the SPC mecanisms helps to achieve this higher
generalizaion level. These best results are adieved even
without including any domain dependent information in
the fitnessfunction for the Co-evolutive experiments. It is
expeded that with such that information the results could
be improved.

In stochastic methods the information of the best solution
found can be non-redistic. To redly compare the
efficiency of some methods is better to have an estimation
of the eainessof finding a solution in one run. In figure
2, the probability of ead solution is gown. For the Co-
evolutive experiments all the solutions have avalue of
generality higher than 92.5%, and there is a probability of
0.1 of finding solutions of above 94%.

V. CONCLUSIONS

The Uniform Coevolution method allows the production
of generalized behaviors gradualy, changing by time the
seledive presaure of the individuals. At the beginning,
good kehaviors are seached, without taking into account
the environment. The seledive presaure is addressed to
the generation of good kehaviors in ssimple environments.
As the individuals are aapting to environments, the
seledive presaure change to seach good individuas in
gradually more diff erent environments.

In this way, athough changing, a similar and smooth
fitnesslandscgpe is aways kept, that all ows the adaptation
at the same time & the generation of more complex and
generdized behaviors. This lves the problem of over-
adaptation. The results $row how the leaning processin
Uniform Coevolution goes gradualy and uniformly
achieving generali zation and avoiding locd minimal.

The method can be used in any inductive leaning
problem that uses evolutionary computation mechanisms,
to solve the testing problem. The alvantage aises from
the gradually and independent evolution of the examples,
adapting to ead particular solution tested. The results
have been presented from the solutions point of view, but
the analysis of the examples wts finaly generated could
give some important information about the problem being
studied.
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